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Generalized diffusion equations for the density of a particle moving in one dimension under the
influence of Gaussian noise, with Ornstein-Uhlenbeck correlations, are used to study first-passage times
and survival probabilities in the presence of static traps. These diffusion equations have been derived for
times that are either short or large compared to the correlation time 7 and are used, in particular, near
7=0 (limit of quasiperfect dynamic randomness) and near 7= c (limit of quasistatic randomness). The
mean first-passage times scale with distance and with model parameters in the same way as do
superdiffusion times derived from mean-square displacements. The long-time survival probability decays
exponentially in the 7— 0 case and decays as a shrunk exponential, with an exponent ¢4/, for quasistatic
forces. The short-time behavior of the survival probability, as well as the finite-r corrections near 7=0

and near 7= o, are also analyzed.

PACS number(s): 05.40.+j, 02.50.—r, 82.20.Fd

I. INTRODUCTION

In a recent paper [1] we have derived probability distri-
butions for the displacement and for the velocity of a par-
ticle moving under the influence of a Gaussian random
force which is exponentially correlated in time, with a
correlation time 7 (Ornstein-Uhlenbeck noise). The in-
stantaneous position of the particle is a second-order sto-
chastic process governed by the equation of motion

X=f(1). o)

This equation can be viewed as a low-damping limit of
the Langevin equation, X +yx =f(t). For large y the
Langevin equation describes a ‘“‘diffusion-limited” regime
since the motion becomes then rapidly diffusive, while for
v =0 it describes a superdiffusive regime which has been
called “random-force dominated” in a recent application
to reaction kinetics in low-damping systems [2].

In this paper we apply our earlier results for displace-
ment distributions [1] in the random-force-dominated re-
gime (y =0) to the study of two quantities which are of
considerable practical interest and hence have been the
object of many theoretical analyses. These quantities are
the first-passage-time probability and the associated mean
and mean-squared first-passage times, on the one hand,
and the survival probability of the random process in a
random medium with localized static traps, on the other
hand. As in Ref. [1], we shall distinguish between two
limiting time domains where the above quantities show
qualitatively different behavior: a short-time domain in-
cluding short-time intervals compared to the correlation
time 7 of fluctuations of the random force, and a long-
time domain, ¢t >>7. For t>>71 correlation effects are
small and the randomness is predominantly dynamical
for 7—0 while for ¢t <<7 the random force acts, in first
approximation, as a static force when 7— . The fre-
quently considered case of white-noise randomness corre-
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sponds to 7=0.

The probability of a first-passage time ¢ is the probabil-
ity that the particle first leaves a given domain at time t.
First-passage time distributions have been studied exten-
sively for normal diffusion (Wiener-Einstein process) [3]
and for various first-order additive or multiplicative sto-
chastic processes, as well as for lattice random walks. A
selection of review articles and books in the physics
literature, which discuss first-passage time problems and
their applications to topics as diverse as diffusion-
controlled reactions, dissociation of diatomic molecules,
diffusive escape of chemical reactants across potential
barriers, meteorological and geophysical phenomena, fa-
tigue problems in materials, stability problems in
mechanical structures, etc., is listed under Refs. [4]-[9].
To our knowledge the first passage-time problem for the
second-order process (1) with an Ornstein-Uhlenbeck
noise term has not been discussed before.

Consider now the problem of random motion in a
medium with traps. In the simplest case one has random-
ly moving A particles reacting instantly on contact with
immobile B particles, thereby producing C particles
which are inert and also immobile. The study of this type
of reaction kinetics, where the B particles act as absorb-
ing traps, finds applications, e.g., in problems of exciton
trapping in molecular crystals, diffusion of vacancies, or
interstitial in imperfect crystals, and, obviously, in vari-
ous types of chemical and photosynthetic reactions. One
is primarily interested in finding the survival probability,
i.e., the probability for an A4 particle to be still in a trap-
free region, without having been absorbed, at time z. The
survival probability has been found exactly in the case of
diffusion along a line with a low concentration of ran-
domly distributed traps, by Balagurov and Vaks [10] and
by Donsker and Varadhan [11]. The subject has been lu-
cidly reviewed by Haus and Kehr [9]. An interesting
variant of this type of diffusion-controlled reaction is the
diffusion in a random medium with nucleation centers in-
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stead of trapping centers [12]. The nucleation centers
lead to proliferation, rather than to the removal, of
diffusing particles on contact with these centers. More-
over, while the trapping problem is closely related to the
quantum problem of the density of states of an electron in
the potential of random impurities [10,9], the probability
density for a diffusing particle in a proliferating medium
follows directly from the form of the density of states in
the random electron problem [13].

On the other hand, the survival probability for the case
of particles moving solely under the influence of the ran-
dom force has been discussed qualitatively by Araujo
et al. [2] for white-noise autocorrelations (7=0). These
authors also discussed other aspects of the reaction kinet-
ics for this case and presented numerical simulations.
Here we give a more detailed analytic treatment, which
generalizes the .work of Balagurov and Vaks [10] for par-
ticles moving by normal diffusion. Our analysis shows
that the result of Araujo et al. for the survival probabili-
ty in one dimension is in error. Considering the effect of
temporal correlations of the random force, we study, in
particular, the asymptotic form of the survival probabili-
ty for 7— o0, i.e., for a statically correlated random force.
After recalling the necessary results of Ref. [1] for the
domains ¢ >>7 and t << at the beginning of Sec. II, we
proceed in Sec. IT A to discuss the first-passage time dis-
tribution and, more specifically, the mean and the mean-
square first-passage times. In Sec. II B we then derive a
general expression for the survival probability, which we
analyze in detail for short and for long times.

II. FIRST-PASSAGE TIME PROBLEMS
UNDER RANDOM FORCES

The density distribution for a particle whose dynamical
evolution is governed by Eq. (1), with a Gaussian noise
f(¢) which is correlated over a time 7, that is

(fOf))=fn—t"), (f())=0, )
h(t)=27) lexp(—t/7), (3)

has been found to be Gaussian both for short and for long
correlation times [1] or, equivalently for any correlation
time in the limits ¢ >>7 and ¢t <<7. This distribution was
discussed in Ref. [1] starting from the Fokker-Planck
equation for the joint probability distribution of the posi-
tion and the velocity. However, the Gaussian form of the
density distribution follows directly from the Gaussian
nature of the random force, for any form of autocorrela-
tion. Indeed Eq. (1) yields, by quadrature,

x(n)=[lar [ arfay (1)

which allows us to find the moments (x™(¢)) of the den-
sity distribution. With { f(¢)) =0 the odd moments van-
ish and the even Gaussian moments (m =2n) obtained by
averaging the (2n)™ power of (1'), have the well-known
form

(x2M1))=02n —1IM({x22)))",

which depends on the mean-square displacement of the

J. HEINRICHS 48

particle. Using the definition of the characteristic func-
tion one thus obtains, for any type of Gaussian disorder

x2

_— 4
2{x2(t)) @

p(x,0)= 1/2 €XP

1
[2m{x%(1))]
The explicit form of (x%(¢)) for the correlation (2) and
(3) may be readily found by averaging the square of (1').
In the following we are only interested in the limiting ex-
pressions for ¢ >>7 and for ¢t <<, which are given by [1]

it 3r
— =t |, > 5
3 ! 2t T (5a)
(x%1))=
F(Z)t4 [1__4t_+ . F2=£§— (5b)
4 157 A

Here the particle is assumed to be initially at x =0, i.e.,
p(x,0)=05(x) . (6)

In particular, in the white-nose limit (7=0) where the
random force is uncorrelated [since lim,  h(2)=8(1)],
we have

(x2(1))=1f%>. (5

While (5") describes the familiar superdiffusive evolution
[2] of a particle subjected to a white-noise force, the first
term of (5b) corresponds to uniformly accelerated spread-
ing in the presence of a static Gaussian force, which is de-
scribed by the limits 7— o, f3/27—F3 = finite value.
In the following we refer to the limit ¢z >>7, where the
effect of the random force reduces asymptotically to that
of an uncorrelated force, as the limit of quasiperfect dy-
namic randomness. On the other hand, the limit ¢ <<,
where the effect of the random force approaches that of a
static force, will be termed the limit of quasistatic ran-
domness.

Similarly the probability distribution for the velocity of
the particle at any ¢ is exactly given by [1]

P, )= {vXt)))? exp(—v2/2(v%1))) . (7

Again, the simplest derivation [1] of this result consists in
observing that for Gaussian randomness the mth moment
(v™(t)) of the velocity distribution, given by the average
of the mth power of the first integral of (1),

v(t)=fidt'f(¢t'), (1)
reduces to
m _ 0 for m=2n+1
™) = (2n —1M({v%(t)))" for m=2n,

which readily yields the Gaussian distribution (7) via the
characteristic function. In the special case of the correla-
tion (2), one finds

) =f3(t—7[1—exp(—t/7T)]) . (8)

Equations (4) and (7) are solutions of generalized dis-
placement and velocity diffusion equations
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p(x,1) _ 1 d{(x*(t)) ¥p(x,1) ©)
ot 2 dt ax?

p,t) _ 1 d(v*1)) 3*p(v,1) (10)
at 2 dt w?

which constitute our starting point for the study of first-
passage times and survival probabilities in Secs. II A and
11 B.

A. First-passage times

For a random particle placed initially at the origin
x =0 of a line extending from x = — o to o one is typi-
cally interested in the probability density y(¢) for the par-
ticle to cross either of two points x ==*¢£ for the first time
at time r. This probability is related to the probability
w(x,t) of finding the particle at a point x on the segment
—§E=<x <¢ without having crossed the edges, x ==*§,
during time ¢. Clearly w(x,?) is given by the solution of
Eq. (9) on the segment extending from x = —§& to £ if one
assumes that absorbing barriers have been erected at
x ==& such that w(=*&,¢)=0. This amounts indeed to
discarding the points x ==+£. The solution for w(x,t?)
obeying this boundary condition and the initial condition
(6), obtained from the method of separation of variables,
is

w(x, t)———l— i cos(k,x Jexp(—1k2(xX(1))),  (11)
=0
where
_2n+1)m _
k=g =012 (12)

It generalizes the corresponding solution for normal
diffusion studied by Seshadri and Lidenberg [3]. The to-
tal probability W(E,t) for finding the particle within
—&£=<x <& without ever having crossed the domains
edges is then

W(g,z)=f_§§dx w(x,1) (13)

(=n"

_ 4 i exp | — 2n F1PTxX0)
T = 2nt+1 P

8&2

(13"
Now, by conservation of probability, the probability den-

sity for the particle to cross x =& or x = —§ at time ¢ is
t
y()=— dW;t’ ) , (14)

so that the moments T, (&) of y(¢), the so-called first-
passage time moments, are given by

T, (&)= [ “dt 17y(1)

=m [“dtem T W(E =1,2,..., 15
m [ (&1), m (15)
where T,(£) is the mean first-passage time, T,(&) is the
mean-square first-passage time, etc.
From (13’) and (15), using Egs. (5a) and (5b), we then
obtain successively, for limiting cases in the random-force
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dominated regime:

1/3
_ 4 |15 ]| 248 T
Ty(§)=7-T 3]/3‘3] ,Tzfg} +t5,  (6a)
2/3
8 2 7 || 24&
T,(&)=—T |= B |+
287505 B3 Wng]
1/3
87 5|38
+T 3 B3 =y , (16b)

for quasiperfect dynamic randomness (¢ >>7—0) and

T‘(g)zzwlx/i + B% 2F(2)27r2 N
+ 12\/32/23(2 |F§0|T , (17a)
T,(6)= 47713/2/3<2>‘/§|§F0|
372
%% 2815 [;%J . (17

for quasistatic randomness (¢ <<7— ). Here I'(x) is

the gamma function and
o0 __1 n

, (18)
Zo2n+1)"

where we generalize a familiar notation [14] for sums of
integer reciprocal powers of odd numbers to sums of re-
ciprocal powers which may be fractional. One has [14]
B(2)=0.915965...=G (Catalan’s constant), and the
sums of fractional reciprocal powers in (16a) and (16b)
and (17a) and (17b) are readily accessible on a pocket cal-
culator if precise numerical values are required.

It may be of interest also to study the times when the
velocity diffusion process defined by (8) and (10) first
reaches some particular (threshold) value |7n|. Thus the
mean and mean-squared first-passage times to velocity
values 7 are found to be
2

T ()= |- (19a)
R A
59 4 M 2
T,( ): 5) +2 (19b)
Hm=H lfo 7o
for t >7—0, and
2. 9 1 [q )
T(m= 3/23(2)|F0|+‘6’; Fo |’ (20a)
2
_ | 16V2
T,(n) [Fo ] 1+ BT (20b)
for t<<T7— 0. Here [14] [B(4)=0.9889%4.. .,

B(5)=0.99615..., and we have wused the values
B(1)=m/4 and B(3)=mu?/32. Note that, with the re-
placement f3—2D, the 7-independent terms in (19a) and
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(19b) coincide with Egs. (3.6) and (3.7) in Ref. [3], respec-
tively.

It is instructive to compare the above results with
characteristic (super)diffusion times associated with the
moments of the distribution of displacements for a parti-
cle in a random-force field. Equations (5a) and (5b), for
example, yield the following expressions for characteris-
tic times ¢, of superdiffusion to a distance / from the ori-
gin:

2
3 + T4, o7 1)
8 6
tl 172
21 2 1
— -, <<T. 22
7yl 157 |F,] 1T (22)

By comparing (16a) and (17a), respectively, with (21) and
(22), one observes that the form of the scaling of T}, with
& and with the parameters f,(F,) and 7 is the same as the
scaling of ¢;, in (21) and (22). A further remarkable
feature of the above results is the universal form of the
leading finite 7 correction in the mean first-passage times
(16a) and (19a).

B. Survival probability

We now add a low concentration ¢ << 1 of fixed absorb-
ing traps at random positions x;, i =1,2, - - - N, along
our random chain of length L — . A particle placed in-
itially at some point on the chain will move randomly un-
til disappearing instantly when touching for the first time
one of its two nearest-neighbor traps. The infinite chain
is thus naturally divided up into independent adjacent
segments with traps at their end points such that, on any
given segment, a particle may diffuse freely until being
absorbed when reaching a trap. The first step is thus to
determine the probability w;(x,?) of finding the particle
at point x at time ¢ on a segment with trapping centers at
the edges x; and x; . given that it started somewhere on
this segment at t =0. This probability is related to the
probability of first passage to x; or x;,;, as discussed in
Sec. ILA. The total survival probability S(z) is then ob-
tained as follows, as a double average of the probability,
W)= fﬁj“dx w;(x,t) of being anywhere on a given
segment bounded by traps [9,10]. First, since at t =0 the
random particle may be anywhere on segment i, we aver-
age w;(x,t) over a uniform initial distribution of particle
positions, i.e.,

wi(x,O)Z% , (23)
which normalizes to [; /L over the ith segment of length
I,=|x; +1—x;| . Secondly, because of the fact that the
diffusing particle may be found on any one of the above
segments, of variable lengths, the survival probability
reduces to the average of W;(¢) for a particular segment i,
over the distribution of segment lengths corresponding to
randomly distributed traps. Since the traps are uniformly
distributed with a concentration ¢ =N /L the probability
of finding a segment of length / or, equivalently, the prob-
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ability for the neighbor of a given trap to be at a distance
I, is

fi)=

In summary, for the case of particles driven solely by a
random force, we first require the solution w;(x,t) of Eq.
(9) on a segment x; <x <x;,, of length /;, with the
boundary condition of vanishing probabilities at the end
points:

cexp(—cl) . (24)

w;(x; 41, t)=w;(x,t)=0 (25)

and the initial condition (23). The total survival probabil-
ity, S(¢) is then given by [10]

S()=3W;(t)=N{(W(1)) , (26)

where N=cL is the total number of traps and ()
denotes averaging with respect to the distribution of seg-
ment lengths (24). By solving Eq. (9) by the method of
separation of variables under the conditions (23) and (25)
we get

k2{x(t))

27

with k, defined by (12) where /; now replaces 2£. Next
we use the form of W;(¢) which follows from (27) to ex-
press the survival probability (26). The final result is

2,2( 2
t)———fm e {(x*(1)

212

which generalizes the result obtained earlier by
Balagurov and Vaks [10] in the case of normal diffusion.
In obtaining (28) the infinite series over wave numbers in
(27) has been summed thanks to a change of integration
variable when averaging over segment lengths. Also, one
may verify that the initial condition S(0)=1 is indeed
obeyed by (28), e.g., by using tabulated integrals [14,15].

We shall analyze (28) successively in the limits of short
and of long times as defined by @ <<1 and a >>1, respec-
tively, where

, (28)

smhk

2.2

a—”; (xX1)) . 29)

For each of these cases we shall distinguish between the
limit of quasiperfect dynamic randomness described by
(5a) with 7—0 and the limit of quasistatic randomness
defined by (5b) with 7— 0.

1. Short-time domain (a <<1)

In this case we use the condition S(0)=1 to rewrite
(28) as

S(t)—1——f°°

1 —
0 smhk

exp——a— l
A

Since for a << 1 the dominant contribution to the integral
arises from values A <<1, we approximate the factor
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A/sinhA by its A=0 limit, which yields [15]
S(t)=1—47"3/2V'a. From (5a) and (5b) we thus obtain
1/2
~1—n |2 2|1 3T |4 L.
S(t)~1—-2 e clfolt 1 a1 + , (30)

for the limit of quasiperfect dynamic disorder, and
1/2

c|Fy|t? 2t

1——

t)~1—
S() 157

+ -, (31)

for quasistatic disorder. These results for the random-
force-dominated (or low-damping) regime should be com-
pared with the slower initial decrease, proportional to
V't, of S(¢) in the diffusion limited (or large damping) re-
gime [10]. The latter time dependence has apparently
been observed for exciton trapping in the transient re-
gime [16].

2. Long-time domain (a >>1)

For long times such that a >>1 the contribution from
the domain A >>1 dominates in the integral (28). Using a
saddle-point integration [saddle point at A~(2a)!"?] we
find
172

S(t)=16 [—3—%3— exp [_%(20)1/3] .

By inserting (5a) and (5b) we then obtain successively

172
8 202f<2) 37
Sy=—|——| ¥?|1—=—
() 3 4t
1/3
77'2c2f% T
X - | 1——
exXp 2 3 61 ’ (32)
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for quasiperfect dynamic disorder (¢ >>7—0) and
20 1172
¢Fp 2t
S(¢)=8 | 1—==
() 61 l { 157
s 202 1173
c*mFg 4t
X I R 4/3 1——
exp ) 2 25, , (33)

for quasistatic disorder (¢t <<7— o). Thus instead of the
stretched exponential decrease of S(¢), with an exponent
—InS(z)~¢'", in the diffusion-limited regime [10,17] we
find an asymptotic exponential decrease —InS(¢)~1¢ for
weakly correlated dynamic randomness (#>>7) and a
shrunk-exponential decrease —InS(z)~t*"® for quasistat-
ic randomness (¢ <<7) in the random-force-dominated re-
gime.

Recently Araujo et al. [2] have suggested the asymp-
totic behavior

S(t)~exp(—c,t35) , (34)

for the case of the random-force-dominated regime with
uncorrelated force fluctuations (7=0). We believe that
(34) is incorrect. The reason is that individual Fourier
components in the expression (27) for the probability of
finding the diffusing particle on an individual segment,
with absorbing traps at the edges, are proportional to
exp[ —c,13/1*] [Eq. (50)] rather than to exp[ —c,/I>"*]
as assumed in Eq. (2) of Ref. [2]. This is the origin of the
qualitatively different forms of the asymptotic decrease in
(34) and in the 7=0 form of (32).
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